2020 June Enrichment - Factoring

Case I
$$(ax^2 + bx + c) \rightarrow a = 1$$

Factor each quadratic. Examples:

$\frac{1}{x^2 - 10x + 24}$	$x^{2} + x - 12$
Factors of 24, sum=10	Factors of 12, sum = -1
(x - 6)(x - 4)	(x + 4)(x - 3)
1) $x^2 + 11x + 24$	2) $x^2 - 4x - 12$

3)
$$x^2 - 22x + 72$$
 4) $x^2 - 19x - 20$

5) $x^2 - 18x + 32$ 6) $x^2 - x - 42$

7) $x^2 + 27x + 72$ 8) $x^2 + 4x - 96$

Difference of Two Squares (DOTS):

A special type of quadratic:

- 1) Binomial (2 terms, not 3)
- 2) Must be a difference \rightarrow subtraction
- 3) Middle term or "x term" missing
- 4) Both terms are perfect squares

Looking at the "check" on these DOTS problems is helpful in understanding why we factor DOTS problems in this way.

(D.O.T.S)	Check:	(D.O.T.S)	Check:
$x^2 - 49$	(x + 7)(x - 7)	$4x^2 - 121$	(2x+11)(2x-11)
Diff of Two Sq.	x(x-7) + 7(x-7)	Diff of Two Sq	2x(2x-11)+11(2x-11)
	$x^2 - 7x + 7x - 49$		$4x^2 - 22x + 22x - 121$
(x+7)(x-7)	$x^2 - 49$	(2 <i>x</i> +11)(2 <i>x</i> -11)	$4x^2 - 121$

- 9) $x^2 144$ 10) $9x^2 1$
- $11) x^2 196 12) 16x^2 25$
- $13) x^2 36 14) 49x^2 4$

 $15) x^2 - 400 16) 169x^2 - 121$

2Step Factoring: Factor using the GCF and then try to factor what's left.

<u>Example:</u>	$6x^2 - 18x + 12$	$20x^2 - 125$
-	$6(x^2 - 3x + 2)$	$5(4x^2-25)$
	6(x-2)(x-1)	5(2x+5)(2x-5)
	$17) \ 5x^2 - 5x - 100$	18) $7x^2 - 252$

$$19) \ 6x^5 + 72x^4 + 210x^3 \qquad \qquad 20) \ 75x^9 - 108x^7$$

21) $12x^{10} + 12x^9 - 360x^8$ 22) $1,331x^2 - 275$

Grouping (or Case II):

$\underline{a \neq 1}$

<u>Examples:</u>	
$6x^2 - 5x - 4$	(mult. 1^{st} by last) $F = -24$, $S = -5$
$6x^2 - 8x + 3x - 4$	Split the middle term
2x(3x-4) + I(3x-4)	Split and get GCF out of each side

(3x-4)(2x+1)	Take out the common binomial (3x-4)
	as a GCF, that leaves 2x-1 as your 2 nd
	binomial factor.

 $23) 8x^2 - 5x - 3 24) 6x^2 + 37x + 6$

25) $12x^2 + x - 6$

26) $12x^2 - 17x + 6$

2020 June Enrichment - Factoring

27) $10x^2 - 7x - 3$ 28) $18x^2 + 33x + 5$

29) $16x^2 - 35x + 6$

30) $7x^2 + x - 8$